Home Global warming Prioritize reforestation according to local biogeochemical and biogeophysical impacts

Prioritize reforestation according to local biogeochemical and biogeophysical impacts

1
0
  • 1.

    IPCC Special report on global warming of 1.5 ° C (eds Masson-Delmotte, V. et al.) (OMM, 2018).

  • 2.

    IPCC Special report on Climate change and land (IPCC, 2019).

  • 3.

    Intended Nationally Determined Contributions (INDC) https://www4.unfccc.int/sites/submissions/indc/Submission%20Pages/submissions.aspx (UNFCCC, 2015); https://unfccc.int/process-and-meetings/the-paris-agreement/nationally-determined-contributions-ndcs/indcs

  • 4.

    Erb, K.-H. et al. Surprisingly large impact of forest management and grazing on global plant biomass. Nature 553, 73-76 (2017).

    Google Scholar article

  • 5.

    Griscom, BW et al. Natural climate solutions. Proc. Natl Acad. Sci. United States 114, 11645–11650 (2017).

    Google Scholar CAS Article

  • 6.

    Ellison, D. et al. Trees, forests and water: interesting ideas for a warm world. Glob. About. Switch 43, 51-61 (2017).

    Google Scholar article

  • 7.

    Bonan, GB Forests and climate change: forcings, feedbacks and climate benefits from forests. Science https://doi.org/10.1126/science.1155121 (2008).

  • 8.

    Betts, RA Offsetting the potential carbon sink of boreal afforestation by decreasing surface albedo. Nature 408, 187-190 (2000).

    Google Scholar CAS Article

  • 9.

    Betts, RA, Falloon, PD, Goldewijk, KK & Ramankutty, N. Biogeophysical effects of land use on climate: model simulations of radiative forcing and large-scale temperature changes. Agric. For. Meteorol. https://doi.org/10.1016/j.agrformet.2006.08.021 (2007).

  • ten.

    Bala, G. et al. Combined climate and carbon cycle effects of large-scale deforestation. Proc. Natl Acad. Sci. United States 104, 6550-6555 (2007).

    Google Scholar CAS Article

  • 11.

    Davin, EL & de Noblet-Ducoudre, N. Climate impact of global deforestation: radiative versus non-radiative processes. J. Clim. 23, 97–112 (2010).

    Google Scholar article

  • 12.

    Perugini, L. et al. Biophysical effects on temperature and precipitation due to change in land cover. About. Res. Lett. 12, 053002 (2017).

    Google Scholar article

  • 13.

    Anderson-Teixeira, KJ et al. Climate regulation services for natural and agricultural ecoregions of the Americas. Nat. Clim. Switch 2, 177-181 (2012).

    Google Scholar article

  • 14.

    Sonntag, S., Pongratz, J., Reick, CH & Schmidt, H. Reforestation in a high-CO2 world — higher than expected mitigation potential, lower than expected adaptation potential. Geophys. Res. Lett. 43, 6546-6553 (2016).

    Google Scholar CAS Article

  • 15.

    Gao, F. et al. Multiscale climatological albedo search maps derived from the BRDF / albedo products of the moderate resolution imaging spectroradiometer. J. Appl. Remote sensing. 8, 083532 (2014).

    Google Scholar article

  • 16.

    Bright, RM et al. Local temperature response to land cover and management change induced by non-radiative processes. Nat. Clim. Switch https://doi.org/10.1038/nclimate3250 (2017).

  • 17.

    Duveiller, G., Hooker, J. & Cescatti, A. The mark of vegetation change on the energy balance of the Earth’s surface. Nat. Common. 9, 679 (2018).

    Google Scholar article

  • 18.

    Davin, EL, de Noblet-Ducoudré, N. & Friedlingstein, P. Impact of land use change on surface climate: relevance of the concept of radiative forcing. Geophys. Res. Lett. https://doi.org/10.1029/2007GL029678 (2007).

  • 19.

    Taylor, KE, Stouffer, RJ & Meehl, GA An overview of CMIP5 and the design of the experiment. Taurus. A m. Meteorol. Soc. 93, 485-498 (2012).

    Google Scholar article

  • 20.

    Aaron, R. & Gibbs, Hong Kong New IPCC Tier 1 Global Biomass Carbon Map for 2000 (Carbon Dioxide Information Analysis Center, 2008); https://cdiac.ess-dive.lbl.gov/epubs/ndp/global_carbon/carbon_documentation.html

  • 21.

    Sanderman, J., Hengl, T. & Fiske, GJ Soil carbon debt over 12,000 years of human land use. Proc. Natl Acad. Sci. United States 114, 9575-9580 (2017).

    Google Scholar CAS Article

  • 22.

    Devaraju, N., Bala, G. & Modak, A. Effects of large-scale deforestation on rainfall in monsoon regions: distant effects versus local effects. Proc. Natl Acad. Sci. United States 112, 3257–3262 (2015).

    Google Scholar CAS Article

  • 23.

    Meier, R. et al. Empirical estimation of rainfall changes induced by reforestation in Europe. Nat. Geosci. 14, 473-478 (2021).

    Google Scholar CAS Article

  • 24.

    Kirschbaum, MUF, Saggar, S., Tate, KR, Thakur, KP & Giltrap, DL Quantification of climate change consequences of land use change between forest and agriculture. Sci. About. https://doi.org/10.1016/j.scitotenv.2013.01.026 (2013).

  • 25.

    Williams, DW & Liebhold, AM Climate change and range of two North American bark beetles. Agric. Entomol. 4, 87-99 (2002).

    Google Scholar article

  • 26.

    Kurz, WA et al. The mountain pine beetle and forest carbon feedback on climate change. Nature 452, 987-990 (2008).

    Google Scholar CAS Article

  • 27.

    Battisti, A. et al. Expansion of the geographic range of the pine processionary caterpillar caused by increased winter temperatures. School. Appl. 15, 2084-2096 (2005).

    Google Scholar article

  • 28.

    Bastin, J.-F. et al. The global potential for tree restoration. Science 365, 76-79 (2019).

    Google Scholar CAS Article

  • 29.

    Gomes, VHF, Vieira, ICG, Salomão, RP & ter Steege, H. Amazonian tree species threatened by deforestation and climate change. Nat. Clim. Switch 9, 547-553 (2019).

    Google Scholar article

  • 30.

    Senior, RA, Hill, JK & Edwards, DP Global loss of climate connectivity in tropical forests. Nat. Clim. Switch 9, 623-626 (2019).

    Google Scholar article

  • 31.

    Winckler, J., Lejeune, Q., Reick, CH & Pongratz, J. Nonlocal effects dominate the response of global mean surface temperature to the biogeophysical effects of deforestation. Geophys. Res. Lett. 46, 745-755 (2019).

    Google Scholar article

  • 32.

    Wessel, P. & Smith, WHF A global, self-consistent, hierarchical, high resolution coastal database. J. Geophys. Res. Solid earth 101, 8741-8743 (1996).

    Google Scholar article

  • 33.

    Wessel, P. et al. Generic mapping tools version 6. Geochemistry. Geophys. Geosystem. 20, 5556-5564 (2019).

    Google Scholar article

  • 34.

    Lejeune, Q., Seneviratne, SI & Davin, EL Historical impacts of land use change on climate: comparative evaluation of the LUCID and CMIP5 multimodel experiments. J. Clim. https://doi.org/10.1175/JCLI-D-16-0213.1 (2017).

  • 35.

    Schwaab, J. et al. Carbon storage versus albedo change: radiative forcing of forest expansion in temperate mountainous regions of Switzerland. Biogeosci. To discuss. 11, 10123-10165 (2014).

    Google Scholar

  • 36.

    Myhre, G. et al. in Climate change 2013: the basis of physical science (eds Stocker, TF et al.) Ch. 12.5.4 (Cambridge Univ. Press, 2013).

  • 37.

    Le Quéré, C. et al. Global carbon budget 2018. Syst. Sci. Data ten, 2141–2194 (2018).

    Google Scholar article

  • 38.

    Clark, WC Carbon dioxide review: 1982 467 (Oxford Univ. Press, 1982); https://www.osti.gov/biblio/6438207

  • 39.

    Windisch, MG, Davin, EL & Seneviratne, SI Prioritization of reforestation according to local biogeochemical and biogeophysical impacts – data (v1.0.0) [Dataset]. Zenodo https://doi.org/10.5281/zenodo.5184884 (2021).

  • 40.

    Windisch, MG Prioritize reforestation based on local biogeochemical and biogeophysical impacts — code (v1.0.0). Zenodo https://doi.org/10.5281/zenodo.5211680 (2021).


  • Source link